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We investigate the time evolution of a model system of interacting particles
moving in a d-dimensional torus. The microscopic dynamics is first order in
time with velocities set equal to the negative gradient of a potential energy term
9 plus independent Brownian motions: 9 is the sum of pair potentials,
V(r)+#dJ(#r); the second term has the form of a Kac potential with inverse
range #. Using diffusive hydrodynamic scaling (spatial scale #&1, temporal scale
#&2) we obtain, in the limit # a 0, a diffusive-type integrodifferential equation
describing the time evolution of the macroscopic density profile.

KEY WORDS: Interacting particle systems; hydrodynamic limit; nonlocal
evolution equations.

1. INTRODUCTION

The transition from the microscopic dynamics of interacting particles to
hydrodynamical type equations describing the coarse grained evolution of
macroscopic variables, such as the diffusion equation for the density, is a
basic problem of non-equilibrium statistical mechanics. While far from
resolved for systems with realistic interactions there has been much
progress recently on this problem for model systems. Like in real systems,
the transition from microscopic to macroscopic evolutions in these models
is based on a separation between microscopic and macroscopic scales. Set-
ting = equal to the ratio of microscopic to macroscopic spatial scale and
then looking at macroscopic times which are of order =&: microscopic time
units, :=1 for Euler (non-dissipative) and :=2 for diffusive evolutions,
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we expect to obtain the macroscopic equations in the hydrodynamical
scaling limit (HSL) = a 0. We refer to the books of De Masi and Presutti, (3)

and Spohn, (24) for a general background on this subject (see also the review
article by Lebowitz, Presutti, and Spohn(16)).

To actually prove this HSL, one needs to show that during macro-
scopic evolutions the microscopic particle system can be well described, on
the microscopic scale, by a local version of the equilibrium measure which
is stationary under the dynamics. These measures depend on quantities
conserved by the microscopic dynamics, such as the particle density, which
then evolve on the slower hydrodynamic time scale according to the
hydrodynamic equations. This requires good mixing or chaotic properties
of the dynamics (as well as of all the relevant equilibrium states). This is
particularly so for the case of diffusive scaling where longer times are
involved. It is for this reason that the only model systems of interacting
particles for which the HSL has been established in the diffusive limit are
systems with stochastic dynamics. Thus the HSL for Ginzburg�Landau
models was established first by Guo, Papanicolaou and Varadhan, (12) by
applying entropy techniques. These techniques were further developed by
Rezakhanlou, (21) to cover the case when the invariant measure is not a
product measure and phase transitions may occur. These methods can be
applied also to lattice gas models that satisfy the so called ``gradient condi-
tion.''(24) For lattice gases this condition is however not natural and the
only known examples are when the invariant measure is a product measure
or the spatial dimension is one.(13, 24) Very recently the diffusive HSL for
non gradient lattice gases has been proved by Varadhan and Yau.(26) For
systems of particles in the continuum the gradient condition is more
natural, while a common technical problem in these models is the control
of the local number of particles: the conservation law cannot prevent
locally very high densities. The only continuum models treated with the
entropy techniques quoted above are one dimensional systems of Brownian
particles interacting via positive superstable short range potentials con-
sidered by Varadhan, (25) and Ornstein�Uhlenbeck interacting processes
studied by Olla and Varadhan.(19) We should also mention here that the
diffusive limit can be proven for a Hamiltonian system of non-interacting
particles moving among a fixed array of convex hard scatterers: the Sinai
billiard system with finite horizon in d=2.(1, 2, 17, 18)

In 1991 Yau, (27) proposed a new method for proving the HSL of inter-
acting particle systems of gradient type, looking at the relative entropy and
its rate of change w.r.t. local Gibbs states. This method can be applied also
to continuum systems in higher dimension, e.g., in the derivation of the
Euler equations from a Hamiltonian system with weak noise considered by
Olla, Varadhan, and Yau.(20)
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In the present paper we extend the work of Varadhan to Brownian
particles with positive superstable short range potentials in all dimensions.
In addition we also permit long range pair interactions of the Kac type in
which the range parameter #&1 goes to infinity as the macro to micro spa-
tial scale =&1. This extends previous work for such systems on a lattice.(9)

To be more precise, we consider a system of N particles which evolve
in time according to the non-inertial Brownian dynamics

dri

d{
=&

�9
�ri

(r1 ,..., rN)+Wi ({) (1.1)

where Wi ({) is a stochastic Langevin force with Gaussian statistics having
covariance (;�2) $ij $({&{$) 1

�
, 1

�
the unit d-dimensional tensor. The param-

eter ; is the inverse temperature of the canonical ensemble, +texp[&;9],
which is the stationary measure for the evolution. The potential energy 9
is a sum of pair potentials,

9(r1 ,..., rN)= 1
2 :

i{ j

[V(rij)+#dJ(#rij)] (1.2)

where rij=ri&rj and the ri , i=1,..., N, are confined to a d-dimensional
torus Td

L of length L. We take V(r) to have a finite range R with R<#L:
#&1 is the range of the Kac potential which will be taken to be large com-
pared to the inter-particle spacing L�N1�d. Systems with interaction of form
(1.2), with V(r)#0, J(r)>0, and different types of dynamics, have been
investigated numerically and analytically by Klein and coworkers as model
of glassy dynamics.(11, 14, 15)

We observe that due to the prefactor #d+1 appearing in the force term
due to the Kac potential, the dynamics defined by (1.1) is a weak perturba-
tion of the one defined for J=0, i.e. without long range interactions. Thus
we may expect that for small #'s the system reaches local equilibrium w.r.t.
the short range potential on spatial scales smaller than #&1 at times of
order #&2. The effect of the long range interaction on such states will then
appear only in determining the macroscopic equation for the relevant
parameters describing the local equilibrium.

In fact we shall take as our initial distribution something close to the
local equilibrium distribution relative to the short range potential V with
a density which varies on the scale of LtN1�d

t#&1 and consider macro-
scopic times of order {�#&2. The HSL will then correspond to letting # a 0.
We will prove that in that limit the density profile on the macroscopic
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scales x and t will satisfy the following non-local integro-differential equa-
tion of the diffusive type:

�\
�t

(t, x)={ } {D(\(t, x)) {\(t, x)+_(\(t, x)) |
Td

dy {J(x& y) \(t, y)=
(1.3)

where the integral is over the d-dimensional unit torus Td and _(\)#;\
is the mobility of a system of interacting Brownian particles, which, due to
the fact that the system is gradient, does not depend on the interactions.(24)

The diffusion coefficient D(\) is given explicitly in terms of the Helmholtz
free energy density a(;, \) associated to the ``reference system'' interacting
only with the short range potential V, in such a way that the following
``Einstein Relation'' holds (ref. 24):

D(\)=_(\)
�*
�\

=_(\)
�2a
�\2 (1.4)

where * is the chemical potential of the reference system at density \. As
in the lattice case, (9) Eq. (1.3) can be rewritten in terms of the gradient flux
associated to the classical local mean field free energy functional and the
density dependent mobility _(\):

�\
�t

(t, x)={ } {_(\) {
$F

$\ = (t, x) (1.5)

where

F(\)=|
Td

dx a(;, \(x))+ 1
2 |

Td
dx |

Td
dy J(x& y) \(x) \( y) (1.6)

Our proof is based on Yau's method quoted above. The main restric-
tion of this method is that the derivation of the HSL is valid only as long
as the macroscopic equation has a smooth classical solution. Consequently,
unlike the lattice case, we can no longer guarantee existence of global solu-
tions. In fact, even if the initial datum is smooth and lies in the one phase
region (for the reference system), we cannot guarantee that the time evolu-
tion will not develop singularities or create regions of high density where
the reference system undergoes a phase transition and the diffusion coef-
ficient D(\) vanishes.

The outline of the rest of the paper is as follows. In Section 2 we give
a precise description of our system and present the results. In Section 3 we
prove the HSL by computing the relative entropy and its rate of change
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w.r.t. the local equilibrium states of the reference system. To do this we
need a local ergodic theorem whose proof is sketched in Section 4 and
large deviation estimates for the local Gibbs states which are the content
of Section 5. A local existence theorem of classical solutions for the macro-
scopic equation is quite standard, a sketch of the proof is given at the end
of Section 3.

2. NOTATION AND RESULTS

In this section we state our problem in a precise mathematical form
using from the beginning the rescaled space and time variables, xi=#r i ,
and t=#2{. We also absorb ;�2 into the Brownian motion term which
remains invariant under this rescaling of space and time. In these units we
consider a system of N interacting Brownian motions x

�
(t)=[x1(t),...,

xN(t)] with state space Td, the d-dimensional unit torus, satisfying the
following equations (i=1,..., N ):

dxi=&; _#&1 :
j : j{i

{V(#&1(x i &x j))+#d :
j : j{i

{J(x i&xj)& dt+- 2 dw i

(2.1)

where [w1 ,..., wN] are independent Brownian motions on Td, the
parameter ;�0 is the inverse temperature, J # C2(Td) and V(r) # C1(Rd)
is a positive function of |r|, with compact support and such that V(0)>0.
The latter implies that V is superstable. In Eq. (2.1), {V(#&1(xi&x j)) and
{J(xi&xj) are the gradients of the functions V( } ) and J( } ) w.r.t. their
arguments, evaluated at the points #&1(x i&xj) and (x i&xj) respectively.
We shall further assume that the number of particles N depends on the
scaling parameter # # (0, 1] in such a way that N#dZ1 as # a 0 (typically
N=[#&d]).

The process t � x
�
(t) is a diffusion on TdN with generator

L#=L (0)
# +U# (2.2)

where

L(0)
# =:

i

2i&#&1 :
i{ j

;{V(#&1(xi&xj)) } {i (2.3)

and

U#=&#d :
i{ j

;{J(xi&xj) } {i (2.4)
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In (2.3) and (2.4) 2i ({i) denotes the Laplacian (gradient) w.r.t. the i th
particle component of x

�
# TdN. Note that the diffusion L (0)

# is reversible
w.r.t.

+#(dx
�
)=

1
Z#

exp _&
;
2

:
i{ j

V(#&1(xi&xj))& dx
�

(2.5)

where Z# is the normalization factor making +# a probability measure
on TdN.

If the initial distribution of the diffusion has a density f (0)
# w.r.t. +# then

the density at any later time, f#(t, x
�
), satisfies the forward Fokker�Planck

equation

�f#

�t
=L*# f# , f# | t=0= f (0)

# (2.6)

where L*# is the adjoint of L# w.r.t. +# .
To state our result we need to introduce some thermodynamic quan-

tities relative to the reference system, i.e., the system of particles interacting
only via the short range (superstable) potential V. For any regular domain
4 of Rd we define the grand canonical partition function

Z4(;, *)=e&|4| :
�

N=0

e;*N

N! |
4N

dr1 } } } drN exp _&
;
2

:
i{ j

V(ri&rj)& (2.7)

where * # R is the chemical potential. The pressure is defined by the limit

p(;, *)= lim
4ZRd

1
; |4|

log Z4(;, *) (2.8)

which exists and defines a convex and continuous function of ; and *, see
refs. 22 and 23.

Setting the inverse temperature equal to some fixed value ;>0 (which
we will sometimes omit) there exists, for the reference system, a non empty
open set U�R such that for any * # U there is a unique (infinite volume)
Gibbs state. This is a point process on Rd, invariant and ergodic w.r.t.
space translations, satisfying the DLR equations relative to the potential V,
see, e.g., refs. 6 and 22. The pressure is a smooth function of * # U and
the average density of particles \, as a function of the chemical potential,
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is given by the smooth 1-1 map * [ \(*)=�*p(;, *) of U onto W.
�* p(;, U)�R+ . To make more symmetric the correspondence between the
parameters * and \ we introduce the Helmholtz free energy a(;, \) as the
Legendre transform of the pressure:

a(;, \).sup
* # R

[*\& p(;, *)] (2.9)

and we recover the chemical potential as a function of the density by the
smooth 1-1 map \ [ *(\)=�\ a(;, \) of W onto U.

We consider the nonlinear non-local integro-differential equation (1.3)
that we rewrite below in a more concise form:

�\
�t

(t, x)={ } [D(\) {\+_(\) {J V \](t, x) (2.10)

where `` V '' denotes convolution on Td and recall that _(\)=;\. In the
sequel we will use the capital letter P to denote the pressure as a function
of the density. Then P$(\)=\*$(\) so that the diffusion coefficient in (2.10)
is D(\)=;P$(\) (see (1.4)).

In the one phase region the pressure is a smooth, strictly increasing
function of the density, so that D(\) is smooth and strictly positive for any
\ # W. Then the following theorem holds, whose proof is sketched at the
end of the next section.

Theorem 2.1. There exist locally classical solutions of (2.10) that
lie inside the one phase region W.

We fix such a solution \(t, x), 0�t�T (T>0). We may assume that
there is a compact set Kw/W such that \(t, x) # Kw for any (t, x) #
[0, T]_Td and dist(Kw , R+"W)�2$1 for some $1>0. Clearly *(t, x).
�\ a(;, \(t, x)) lies in the compact set Ku .�\a(;, Kw) and dist(Ku , R"U)
�2$2 for some $2>0.

We introduce the local Gibbs state associated to the above macro-
scopic evolution \(t, x) as the probability measure on TdN which is
absolutely continuous w.r.t. +#(dx

�
) with density

f� #(t, x
�
)=

1
C#(t)

exp _:
i

;*(t, xi)& (2.11)

where C#(t) is the normalization constant making f� # a probability density.
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Our main result is

Theorem 2.2. Let f# be the solution of the Fokker�Plank equation
(2.6) with an initial distribution f (0)

# such that

lim
# a 0

#d | +#(dx
�
) f (0)

# (x
�
) log

f (0)
# (x

�
)

f� #(0, x
�
)
=0 (2.12)

Then, for any . # C�(Td), any $>0, and any t # [0, T],

lim
# a 0 |

At
$, .

+#(dx
�
) f#(t, x

�
)=0 (2.13)

where

At
$, . .{x

�
# TdN : }N&1 :

i

.(x i)&|
Td

dx .(x) \(t, x) }>$=
Notation: From now on we will write f (t, } )= f (t) for functions on

[0, T]_Td or [0, T]_TdN.
We will prove Theorem 2.2 by using the relative entropy method

introduced by Yau.(27) We recall the basic entropy estimate: if +, & are two
probability measures on the same measurable space, then for any
F # L1(d&),

| d+ F�H(+ | &)+log | d& exp[F]

where H(+ | &) is the relative entropy of + w.r.t. & and, if +<<&,

H(+ | &)=| d+ log
d+
d&

For any t # [0, T] define the functional

H#(t).#d | +#(dx
�
) f#(t, x

�
) log

f#(t, x
�
)

f� #(t, x
�
)

(2.14)

Note that H#(t) is #d times the relative entropy of f#(t) d+# w.r.t. f� #(t) d+#

and that the argument of the limit in the l.h.s. of (2.12) is exactly H#(0).
In the next section we will prove:
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Theorem 2.3. Under the same hypothesis of Theorem 2.2, for any
t # [0, T],

lim
# a 0

H#(t)=0 (2.15)

The hydrodynamic limit (2.13) follows as a corollary of Theorem 2.3.
To see this we note that it follows from the large deviation principle (LDP)
for the local Gibbs states (2.11), see Section 5, that there is a c($, .)>0
such that

E f� #(t)[1At
$, .

]�exp[&c($, .) N]

where E f [ } ] denotes the expectation w.r.t. the measure f d+# and 11 is the
characteristic function of the set 1. On the other hand, from the basic
entropy estimate the following inequality holds (see, e.g., ref. 27):

E f# (t)[1At
$, .

]�
log 2+#&dH#(t)

log(1+E f� # (t)[1At
$, .

]&1)

so that, for some C>0, E f# (t)[1At
$, .

]�C(N&1+(N#d)&1 H#(t)) � 0 as
# a 0.

3. PROOF OF THEOREMS 2.3 AND 2.1

Because of the hypothesis (2.12) on the initial distribution, we only
need a good estimate on the time derivative of H#(t). By Lemma 3.1 of
ref. 20, the following bound holds:

dH#

dt
�#d | +#(dx

�
) f#(t, x

�
) f� #(t, x

�
)&1 \L*#&

�
�t+ f� #(t, x

�
) (3.1)

Recalling (2.2) and that L (0)
# is reversible w.r.t. +#(dx

�
), (3.1) gives

dH#

dt
�#d | +#(dx

�
) f#(t, x

�
) f� #(t, x

�
)&1 \L (0)

# &
�
�t+ f� #(t, x

�
)

+#d | +#(dx
�
) f#(t, x

�
) f� #(t, x

�
)&1 U #* f� #(t, x

�
) (3.2)
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where U# is defined in (2.4). By an explicit computation

f� #(t, x
�
)&1 \L (0)

# &
�
�t+ f� #(t, x

�
)

=; :
i {; |{*| 2 (t, xi)+2*(t, x i)&*4 (t, x i)

&#&1 :
j : j{i

;{V(#&1(x i&x j)) } {*(t, xi)=+E f� # (t) _:
i

;*4 (t, xi)&
(3.3)

where *4 denotes the time derivative of *. Integrating by parts one computes
the action of the adjoint operator U*# and gets

f� #(t, x
�
)&1 U*# f� #(t, x

�
)=#d; :

i{ j {;{J(xi&xj) } {*(t, x i)+2J(x i&xj)

&#&1 :
k : k{i

;{V(#&1(xi&xk)) } {J(xi&xj)= (3.4)

In both (3.3) and (3.4) there is a term of the following type:

KV (x
�
)= :

i{k

#&1 {V(#&1(xi&xk)) } {.(x i)

for some smooth function . on Td (actually .=;2*(t, } ) and .=
;2J( } &xj) in (3.3) and (3.4) respectively). Since {V is an odd function,

KV (x
�
)= 1

2 :
i{k

#&1 {V(#&1(xi&xk)) } ({.(xi)&{.(xk))

=&1
2 :

i{k

:
!, '

({V )! (#&1(x i&xk)) D!'.(x i)(#&1(xi&xk))'+RV (x
�
)

(3.5)

where x! is the !th component of x # Td and D!'=�2�(�x! �x'). Since
{V has compact support, we can estimate the reminder using Taylor
expansion:

|RV (x
�
) |�r#(.) :

i{k

|{V| (#&1(x i&xk))

with r#(.) � 0 as # a 0.
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Inserting (3.3) and (3.4) into (3.2) and using (3.5) we get

dH#

dt
�E f# (t)[;8#(x

�
, *(t))]+E f� # (t) _:

i

;*4 (t, x i)&+=#(t) (3.6)

where

8#(x
�
, *(t))=#d :

i

[; |{*|2 (t, x i)+2*(t, x i)&*4 (t, xi)]

+#d :
i{ j

:
!, '

;
2

({V )! (#&1(xi&xj)) D!'*(t, xi)(#&1(xi&xj))'

+#2d :
i{ j

[;{*(t, x i) } {J(xi&x j)+2J(x i&xj)]

+#2d :
i{ j

:
k : k{i

:
!, '

;
2

({V )! (#&1(x i&xk))

_D!' J(xi&xj)(#&1(xi&xk))' (3.7)

while =#(t) satisfies the bound

|=#(t)|�#d (r#(;2*(t))+N#dr#(;2J )) E f# (t) _ :
i{ j

|{V| (#&1(xi&x j))&
To obtain the behavior of =#(t) when # a 0 we use the following lemma
which is proved in Section 4:

Lemma 3.1. If W is a continuous function on Rd with compact
support, there is CW>0 such that, for any # # (0, 1] and any t # (0, T],

E f# (t) _#d :
i{ j

W(#&1(xi&x j))&�CW

By applying the lemma with W=|{V| we conclude that

lim
# a 0

sup
t # [0, T]

|=#(t)|=0 (3.8)

Moreover, by the LDP for the local Gibbs state, see Section 5, for any
t # [0, T],

lim
# a 0

E f� # (t) _:
i

*4 (t, xi)&=|
Td

dx *4 (t, x) \(t, x) (3.9)
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Now we want to write 8#(x�
, *(t)) in terms of local empirical quan-

tities. Let 0 be the space of particle configurations on Rd, i.e. | # 0 is a
subset of Rd which is locally finite (see Section 5 for more details). Given
x # Td, for any x

�
# TdN we construct a configuration |x, # # 0 by setting

|x, # .[qi =#&1(x i&x) : |x i&x|<1�4]

(since there is no risk of confusion, to simplify notation we omit the explicit
dependence on x

�
of |x, #). Clearly |x, # is well defined in every compact set

inside the cube of Rd of side 1�(2#) and centered in the origin. So, if F(|)
is a local function on 0, F(|x, #) is well defined for any # small enough.

Let us introduce the cubes Dn=[q # Rd : |q!|�n, !=1,..., d ], n # N.
For any local function F we denote by Fn its spatial average over the cube
Dn , i.e.

Fn(|).
1

|Dn | |Dn

dr F({r|) (3.10)

where {r is the space translation by r ({rr$=r+r$).
Let / be any non negative function on Rd with compact support and

total integral 1. We define the following local functions on 0:

R(|). :
q # |

/(q) (3.11)

G!'(|).
;
2

:
q, q$ # |

q{q$

/(q)({V )! (q&q$)(q&q$)', !, '=1,..., d (3.12)

and let Rn(|), G!'
n (|) be their averages over Dn . Observe that R(|) is a

natural version of local density for the configuration |, while G!'(|) is the
local quantity appearing in the virial theorem (see below, before (3.19)).

Lemma 3.2. Let ., � be smooth functions on Td. Then

lim sup
n � �

lim sup
# a 0

sup
t # [0, T]

E f# (t) } #d :
i

.(x i)&|
Td

dx .(x) Rn(|x, #) }=0

(3.13)

lim sup
n � �

lim sup
# a 0

sup
t # [0, T]

E f# (t) }#d :
i{ j

;
2

({V )! (#&1(xi&xj))(#&1(xi&xj))
' .(xi)

&|
Td

dx .(x) G!'
n (|x, #) }=0 (3.14)
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lim sup
n � �

lim sup
# a 0

sup
t # [0, T]

E f# (t) } #2d :
i{ j

.(xi) �(xi&xj)

&|
Td

dx |
Td

dy .(x) Rn(|x, #) �(x& y) Rn(|y, #) }=0 (3.15)

lim sup
n � �

lim sup
# a 0

sup
t # [0, T]

E f# (t)

_} #2d :
i{ j

:
k : k{i

;
2

({V )! (#&1(x i&xk))(#&1(xi&xk))'

_�(xi&xj)&|
Td

dx |
Td

dy G!'
n (|x, #) �(x& y) Rn(|y, #) }=0 (3.16)

Proof. We have

|
Td

dx .(x) Rn(|x, #)=#d :
i

.n, #(x i)

where, for z # Td,

.n, #(z).#&d |
Td

dx .(x)
1

|Dn | |Dn

dq /(#&1(z&x)+q)

Then the expectation in the l.h.s. of (3.13) can be bounded by &.&.n, #&�

that vanishes as # a 0 for any n # N because of the smoothness assumptions
on .. In an analogous way one can estimate the expectation in the l.h.s. of
(3.14) by

&.&.n, #&� #dE f# (t) _ :
i{ j

;
2

|{V| (#&1(xi&x j)) |#&1(xi&xj)|&
and (3.14) follows from Lemma 3.1.

Let us consider now (3.15). We have

|
Td

dx |
Td

dy .(x) Rn(|x, #) �(x& y) Rn(|y, #)

=#2d :
i{ j

.n, #(xi) �n, #(xi&xj)+Err1
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where �n, # is defined as .n, # and

|Err1 |�&.n, #&�

_max[ |�n, #(x&z)&�n, #( y&z)| : x, y, z # Td, |x& y|�#(r+n)]

with r such that the support of / is contained in the closed ball of radius r.
Since |�n, #(x&z)&�n, #( y&z)|�&{�&� #(r+n)+2 &�&�n, #&� , Err1

vanishes as # a 0. Since |.n, #(xi) �n, #(x i&xj)&.(x i) �(x i&xj)|�
&.&� &�&�n, #&�+&�&� &.&.n, #&� , (3.15) follows. In the same
manner we compute

|
Td

dx |
Td

dy G!'
n (|x, #) �(x& y) Rn(|y, #)

=#2d :
i{ j

�n, #(xi&x j) :
k : k{i

;
2

({V )! (#&1(xi&xk))(#&1(x i&xk))'+Err2

with

|Err2 |�max[ |�n, #(x&z)&�n, #( y&z)| : x, y, z # Td, |x& y|�#(r+n)]

_#d :
i{ j

|{V| (#&1(xi&xj)) |#&1(x1&xj)|

Then (3.16) follows from Lemma 3.1. K

Collecting together (3.6), (3.8), (3.9) and applying Lemma 3.2 to
E f# (t)[8#(x

�
, *(t))], we obtain

lim sup
n � �

lim sup
# a 0

sup
t # [0, T] {

dH#

dt
+E f# (t)

__; |
Td

dx (9x
�
(t, x)&*4 (t, x) \(t, x))&=�0 (3.17)

with

9x
�
(t, x)=[*4 (t, x)&; |{*|2 (t, x)&2*(t, x)] Rn(|x, #)

& :
!, '

D!'*(t, x) G!'
n (|x, #)

&;{*(t, x) } ({J V Rn(| } , #))(x) Rn(|x, #)

&(2J V Rn(| } , #))(x) Rn(|x, #)

& :
!, '

(D!' J V Rn(| } , #))(x) G!'
n (|x, #) (3.18)
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where, for any . # C(Td),

(. V Rn(| } , #))(x).|
Td

dx .(x& y) Rn(|y, #)

Now we want to substitute the spatial average G!'
n (|x, #) with a func-

tion of the empirical density Rn(|x, #). More precisely we would like to
replace it by the average of G!' w.r.t. the Gibbs state with density equal to
Rn(|x, #).

To do this we need to introduce some cutoffs. Let K be a compact set
such that

Kw/K/W, dist(K, R+"W)�$1 , dist(Kw , R+"K )�$1

(recall that Kw is the compact set inside the one phase region W where the
solution \(t, x) lies and that dist(Kw , R+"W)�2$1) and define the local
function un(|).1K (Rn(|)). We denote also by ,k the cutoff at the level
k # R+ , i.e. ,k(s)=s if |s|�k, ,k(s)=sign(s) k otherwise. Finally let
G� !'(\), \ # W, be the average of G!'(|) w.r.t. the unique Gibbs measure
with density \. By the virial theorem, see, e.g., ref. 25,

G� !'(\)=(;P(\)&\) $!'

where P(\) is the pressure as a function of the density \ introduced just
after (2.10).

For any measurable function m : Td � R+ we define the functional

0(t, x, m).(*4 (t, x)&; |{*|2 (t, x)) m(x)&;2*(t, x) P(m(x))

&;{*(t, x) } ({J V m)(x) m(x)&;(2J V m)(x) P(m(x)) (3.19)

Observe now that, since P$(\)=\*$(\), by integration by parts,

|
Td

dx P(\(t, x)) 2*(t, x)=&|
Td

dx \(t, x) *$(\(t, x)) {\(t, x) } {*(t, x)

=&|
Td

dx \(t, x) |{*(t, x)|2

and, analogously,

|
Td

dx P(\(t, x))(2J V \(t))(x)=&|
Td

dx \(t, x) {*(t, x) } ({J V \(t))(x)
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so that, for any t # [0, T],

|
Td

dx *4 (t, x) \(t, x)=|
Td

dx 0(t, x, \(t))

Then we can replace *4 (t, x) \(t, x) by 0(t, x, \(t)) in (3.17).
We decompose now, for any k>0,

9x
�
(t, x)&0(t, x, \(t))= :

4

p=1

0p(t, x)

with

01(t, x)=[0(t, x, Rn(| } , #))&0(t, x, \(t))] un(|x, #)

02(t, x)=[9 (k)
x
�

(t, x)&0(t, x, Rn(| } , #))] un(|x, #)
(3.20)

03(t, x)=[9 (k)
x
�

(t, x)&0(t, x, \(t))](1&un(|x, #))

04(t, x)=[9x
�
(t, x)&9 (k)

x
�

(t, x)]

where 9 (k)
x
�

(t, x) is defined as 9x
�
(t, x) in (3.18) with G!'

n replaced by
(,k b G!')n .

In Section 5 we will prove that there is $0>0 such that

lim sup
k � �

lim sup
n � �

lim sup
# a 0

sup
t # [0, T] {E f# (t) _|Td

dx ;0p(t, x)&&$&1
0 H#(t)=

�0, p=3, 4 (3.21)

On the other hand, the local ergodic theorem, see Section 4, implies that

lim sup
k � �

lim sup
n � �

lim sup
# a 0

|
T

0
ds E f# (s) _|Td

dx ; |02(s, x)|&=0 (3.22)

From (3.17), (3.21) and (3.22) we get, for any t # [0, T],

H#(t)+|
t

0
ds {E f# (s) _|Td

dx ;01(s, x)&&2$&1
0 H#(s)=�o(n, #) (3.23)

with

lim sup
n � �

lim sup
# a 0

o(n, #)=0
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Now, from the basic entropy estimate, for any $>0 and any s # [0, T],

E f# (s) _|Td
dx ;01(s, x)&

� &$&1 H#(s)&$&1#d log E f� # (s) exp _&$#&d |
Td

dx ;01(s, x)&
so that, from (3.23), for any t # [0, T],

H#(t)&$&1#d |
t

0
ds log E f� # (s) exp _&$#&d |

Td
dx ;01(s, x)&

&(2$&1
0 +$&1) |

t

0
ds H#(s)�o(n, #)

By applying the Gronwall Lemma to the last inequality we get

H#(t)�e(2$0
&1+$&1) t \o(n, #)+$&1#d |

t

0
ds log E f� # (s)

_exp _&$#d |
Td

dx ;01(s, x)&+ (3.24)

In Section 5 we will prove that

lim sup
n � �

lim sup
# a 0

$&1#d log E f� # (s) exp _&$#&d |
Td

dx ;01(s, x)&
�$&13$(s, *) (3.25)

where

3$(s, *).sup {|Td
dx [$;[0(s, x, m)&0(s, x, \(s))]

_1K (m(x))&I;(*(s, x), m(x))]; m : Td � R+ integrable=
(3.26)
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and (recall definitions (2.8) and (2.9))

I;(*, m).;( p(;, *)+a(;, m)&*m) (3.27)

From (3.24) and (3.25), for any t # [0, T],

lim sup
# a 0

H#(t)�e(2$0
&1+$&1) t |

t

0
ds $&13$(s, *) (3.28)

We conclude the proof of Theorem 2.3 from (3.28) by showing that, for $
small enough, 3$(s, *)=0 for any s # [0, T]. We first note that, for * # U,
m [ I;(*, m) is strictly convex on K, non negative, and equal to 0 iff
m=�* p(;, *) so that

&|
Td

dx I;(*(s, x), m(x))�0, =0 iff m(x)=\(s, x)

On the other hand the functional

Gs(m).|
Td

dx ;[0(s, x, m)&0(s, x, \(s))] 1K (m(x))

is bounded on the class of functions considered in (3.26) and equal to 0 for
m=\(s). Then, for $ small enough, 3$(s, *)=0 provided that

$Gs

$m
(\(s))=0

(observe that \(s) is away from R+"K because dist(Kw , R+"K )�$1). By
an explicit computation,

;&1 $Gs

$m
(\(s))

=*4 (s)&;( |{*|2 (s)+2*(s) P$(\(s))&{*(s) } {J V \(s)

&{J V (\(s) {*(s))&P$(\(s)) 2J V \(s)&2J V P(\(s)))

But, recalling that P$(\)=\*$(\)=;&1D(\),

|{*|2+2*P$(\)=*$(\)({\ } {*+\2*)=;&1*$(\) { } (D(\) {\)
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and

{* } {J V \+{J V (\{*)+(2J V \) P$(\)+(2J V P(\))

=*$(\)({\ } {J V \+\2J V \)=*$(\) { } (\{J V \)

So that, for any (s, x) # [0, T]_Td,

$Gs

$m(x)
(\(s))=;*$(\(s, x)) _�\

�s
&{ } [D(\) {\+;\{J V \]& (s, x)=0

since \(s, x) satisfies (2.10) and _(\)=;\. K

We conclude the section with the proof of Theorem 2.1.

Proof of Theorem 2.1 (sketch). Let \0 # C2(Td) be such that
\0(Td)/W. By continuity and compactness we can find three compact
intervals Ii=[ai , bi], i=1, 2, 3, such that \0(Td)�I1/I2/I3/W, a3<
a2<a1<b1<b2<b3 . We construct two functions D� , _~ # C1(R) with the
following properties: D� (u)=D(u) and _~ (u)=_(u) for u # I2 , c&1�D� (u)�c
for some c>1 and for any u # R, supp(_~ )�I3 . Then we consider the
Cauchy problem

�\
�t

(t, x)={ } [D� (\) {\+_~ (\) {J V \](t, x) (3.29)

with initial datum \0 . Arguing exactly as in Theorem 4.1 and Remark 4.1
of ref. 10, we know that there exists a (unique) classical solution \(t, x) of
the Cauchy problem above (moreover it lies in the region I3 at any time).
Clearly we can find T>0 such that \(t, x) # I2 for any t # [0, T] and
x # Td. From the choice of D� and _~ it follows that [\(t, x); (t, x) #
[0, T]_Td] is also a (local) classical solution of the original equation
(2.10). K

4. LOCAL ERGODICITY AND ENTROPY BOUNDS

We start this section by proving (3.22). Since D!' * and
D!' J V Rn(| } , #) are bounded functions on Td, it is sufficient to prove that

lim sup
k � �

lim sup
n � �

lim sup
# a 0

|
T

0
dt E f# (t) _|Td

dx |(,k b G!')n (|x, #)

&G� !'(Rn(|x, #))| un(|x, #)&=0 (4.1)
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The main step in proving (4.1) is a local ergodic theorem for the measure
f#(t) d+# :

Theorem 4.1. For any local, bounded and continuous function F,

lim sup
n � �

lim sup
# a 0

|
T

0
dt E f# (t) _|Td

dx |Fn(|x, #)&F� (Rn(|x, #))| un(|x, #)&=0

(4.2)

where F� (\), \ # W, is the average of F w.r.t. the (unique) Gibbs measure
with density \.

Proof. We introduce the translation invariant density

f� #(x
�
)=

1
T |

T

0
ds |

Td
dx f#(s, {xx

�
) (4.3)

so that (4.2) is equivalent to proving that

lim sup
n � �

lim sup
# a 0

E f� # [|Fn(|0, #)&F� (Rn(|0, #))| un(|0, #)]=0 (4.4)

Let nF # N be such that supp(F )/DnF
(Dn as in Definition (3.10)) and let

n� =n+nF . Through the mapping x
�

[ |0, # , for any # small enough it is
well defined the projection

6n� : TdN � 0|Dn�
: 6n� (x

�
)=|0, # |Dn�

We have to characterize the family Fn� of the (weak) limit points of
[&#=6n� ( f� #d+#); # # (0, 1]]. First of all we observe that, by translation
invariance, for any finite region 4 of Dn� ,

E&#[N4]=N#d |4|�|4| (4.5)

This proves that the family [&#=6n� ( f� # d+#); # # (0, 1]] is tight.
Let +|�

m, n� be the canonical Gibbs measure on the cube Dn� with bound-
ary conditions |� # 0 and number of particles m. We prove that any & # Fn�

can be written as

&(d|)=| &̂(d|� , dm) +|�
m, n� (d|) (4.6)

where &̂(d|� , dm) is a measure supported on [m�|Dn� |]. Since any limit
point satisfies an inequality like (4.5), we have only to prove (4.6) for some &̂.
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By a straightforward extension to higher dimensions of the analogous argu-
ment in Varadhan, [ref. 25, Lemma 7.5], we can reduce the problem to the
estimate of a certain Dirichlet form. More precisely (4.6) follows if

sup
# # (0, 1]

#d | d+# :
i

|{i f� # | 2

f� #
<+� (4.7)

The bound (4.7) is consequence of the following lemma:

Lemma 4.2. Let

f� #(t, x
�
).

1
t |

t

0
ds |

Td
dx f#(t, {x x

�
) (4.8)

and define, for any density f,

_#( f ).#d | d+# :
i

|{i f |2

f

Then there is C>0 such that, for any # # (0, 1] and any t # (0, T],

_#( f� #(t))�
C
t

(4.9)

Proof. With an abuse of notation, denote by H( f#(t) | 1) the relative
entropy of f#(t) d+# w.r.t. d+# . Observing that L#1=0 we get, after some
standard computations,

d
dt

H( f#(t) | 1)=
d
dt | d+# f#(t) log f#(t)=| d+# L*# f#(t) log f#(t)

=&#&d_#( f#(t))&#d | d+# :
i{ j

;{J(xi&xj) } {i f#(t) (4.10)

Since for any x # Td{x f#(t)= f#(t, {x } ) solves the same Fokker�Planck
equation, recalling definition (4.3), from (4.10) we get

|
Td

dx
H({x f#(t) | 1)&H({x f#(0) | 1)

t

=&
1
t |

t

0
ds |

Td
dx #&d_#({x f#(s))&| d+# #d :

i{ j

;{J(x i&xj) } {i f� #(t)

(4.11)

673Interacting Particle Systems



Now, since _#( } ) is a convex functional, (4)

_#( f� #(t))�
1
t |

t

0
ds |

Td
dx _#({x f#(s)) (4.12)

On the other hand, by Cauchy�Schwartz inequality,

&| d+# #d :
i{ j

;{J(xi&xj) } {i f� #(t)

��| d+# f� #(t) #d :
i } :

j : j{i

;{J(xi&xj) }
2

- _#( f� #(t))

�C1 #&d - _#( f� #(t)) (4.13)

with C1=; &{J&� . Also, since d+# is {x-invariant,

H({x f#(0) | 1)=H( f#(0) | 1)

=#&d H#(0)&log C#(0)+| d+# f#(0, x
�
) :

i

;*(0, xi)

�#&dH#(0)+2; &*(0, } )&� N�C2 #&d (4.14)

for some C2>0 (in the first bound we used Jensen's inequality, in the
second one the assumption (2.12) on the initial distribution). Collecting
together (4.11), (4.12), (4.13) and (4.14), recalling also that the relative
entropy is a positive function, we get

&
C2

t
#&d� &#&d_#( f� #(t))+C1 #&d - _#( f� #(t))

so that, for any # # (0, 1],

_#( f� #(t))�C1 - _#( f� #(t))+
C2

t
(4.15)

But (4.15) implies that _#( f� #(t))�C�t with C the positive solution of
x=C1 - Tx+C2 . The lemma is proven. K

Now we conclude the proof of Theorem 4.1. Using (4.6), the l.h.s. of
(4.4) can be bounded by

lim sup
n � �

sup
+ # G1

E+[|Fn(|)&F� (Rn(|))| 1K (Rn(|))]
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where G1 is the class of Gibbs states with density \�1. The characteristic
function 1K reduces the problem to computing the above limit in the one
phase region. The limit is then zero by the law of large numbers for the
unique Gibbs state of given density \ # K.

Finally, the limit (4.1) follows easily from Theorem 4.1. In fact (4.2)
with F=,k b G!' implies that the l.h.s. of (4.1) can be bounded by

lim
k � �

T sup
\ # K

[ |,k b G!'@ (\)&G� !'(\)|] (4.16)

But, for any \ # K,

,k b G!'@ (\)&G� !'(\)=E+\[(,k b G!')(|)&G!'(|)]

where +\ is the (unique) Gibbs state with chemical potential *=�\a(;, \).
We observe now that ,k b G!' � G!' pointwise as k � �. Moreover
|,k b G!'|�|G!'|�cN 2

B for some c>0 and some finite subset B of Rd.
Recalling that, by superstability, E+\[N 2

B(|)]<�, the limit (4.16) is zero
by the Dominated Convergence Theorem.

We conclude the section by proving Lemma 3.1:

Proof of Lemma 3.1. Since V is positive and superstable, there is a
constant C� W such that, for any x

�
# TdN,

:
i{ j

W(#&1(x1&x j))�C� W :
i{ j

V(#&1(xi&xj))

The previous inequality is a straightforward extension to higher dimensions
of the analogous one derived in the proof of Lemma 4.2 of ref. 25, so we
omit the details. Then it is enough to prove the lemma for W=V. From
the basic entropy inequality, recalling definition (2.5) of the reference
measure +# ,

E f# (t) _#d :
i{ j

V(#&1(xi&x j))&
�&

2#d

;
log | dx

�
exp _&

;
2

:
i{ j

V(#&1(xi&xj))&+
2#d

;
H( f#(t) | 1)

and, by Jensen inequality,

&
2#d

;
log | dx

�
exp _&

;
2

:
i{ j

V(#&1(xi&x j))&
�#d | dx

�
:

i{ j

V(#&1(xi&xj))�&V&�
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Then we are left with an estimate of the relative entropy H( f#(t) | 1). Recalling
(4.10) and that _#( } ) is a positive functional, we can bound

H( f#(t) | 1)�H( f#(0) | 1)&#d |
t

0
ds | d+# :

i{ j

;{J(xi&xj) } {i f#(s) (4.17)

Since +#(dx
�
) is translation invariant, recalling (4.8) and using (4.13), we

have

&#d |
t

0
ds | d+# :

i{ j

;{J(xi&x j) } {i f#(s)�C1 t#&d - _#( f� #(t)) (4.18)

The r.h.s. of (4.18) can be bounded using (4.9). Then, recalling (4.14), from
(4.17) and (4.18) we finally get, for some C� >0,

2#d

;
H( f#(t) | 1)�C� (4.19)

The lemma is proved. K

5. LARGE-DEVIATION ESTIMATES AND REMOVAL
OF THE CUTOFFS

Part of the large deviation estimates of this section are contained in
the theory developed in refs. 7, 8 and 20. We will sometimes refer to these
papers for proofs and details.

Let us start with some elementary facts in the theory of point pro-
cesses. A configuration of particles in Rd can be represented by a locally
finite subset | of Rd. Sometimes it can be useful to look at | as a Radon
point measure on Rd via the map | [ �q # | $( } &q). We denote by 0 the
set of all such configurations. 0 can be made into a Polish space under the
vague topology {0 , defined as the smallest topology making continuous the
mappings | [ � |(dq) g(q)=�q # | g(q) for any g : Rd � R which is con-
tinuous and compactly supported. The natural _-algebra F on 0 is the
one generated by the counting variables NB : | � card (| & B) for B any
Borel subset of Rd. It can be proven that F is the Borel _-algebra relative
to the topology {0 .

A point process on Rd is a probability measure Q on (0, F). We
denote by M the set of all point processes Q with finite expected number
of particles EQ[NB] in any bounded Borel set B/Rd. M can be equipped
with the topology {w of weak convergence based on the topology {0 .
However it is useful to introduce a finer topology on M, called the
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topology {L of local convergence. Let L be the class of measurable
functions F on 0 that are local and tame, i.e. for any such F there are a
bounded set B and a constant c>0 such that F(|)=F(| & B) and |F(|)|
�c(1+NB(|)). Then {L is defined as the weak* topology on M relative
to L, i.e. the smallest one making continuous the mappings Q [ Q(F ).
EQ[F] for any F # L. Note that {L is strictly finer than {w , as follows
observing that the mappings Q [ Q(NB) are {L-continuous for any
bounded Borel set B.

Let M{ be the set of all the stationary point processes Q in M, i.e.
those Q such that Q=Q b {&1

x for any x # Rd. M{ is {L -closed and is
assumed equipped with the induced topology. For any Q # M there is a
Radon measure &Q(dx) on Rd such that Q(NB)=&Q(B) for any Borel set
B/Rd. If Q # M{ then &Q(dx)=\(Q) dx for some positive number \(Q),
called the intensity of Q.

Let P be the Poisson point process on Rd with intensity \(P)=1 (i.e.
P is such that for any collection of disjoint bounded subsets B1 ,..., Bn , the
counting variables NB1

,..., NBn
are independent and Poisson distributed

with parameters |B1 |,..., |Bn | ). We introduce the entropy density h(Q|P) of
Q # M{ w.r.t. P as follows. For any B/Rd we denote by ?B the projection
on B, and let Dn , n # N, be as in definition (3.10). Denote by Hn(Q | P) the
relative entropy of Q b ?&1

Dn
w.r.t. P b ?&1

Dn
. It is easy to see that

n [ Hn(Q | P) is a super-additive functional, so we can define

h(Q | P)= lim
n � �

|Dn |&1 Hn(Q | P)=sup
n

|Dn |&1 Hn(Q | P) (5.1)

Let now V be a positive and superstable finite range potential like the
one introduced in Section 2. The associated Hamiltonian in Dn with free
boundary conditions is

Hn(|)= 1
2 :

q, q$ # | & Dn
q{q$

V(q&q$), | # 0 (5.2)

For each n # N and Q # M{ let

8n(Q). |Dn | &1 Q(Hn)

be the expected energy per volume in Dn . By our assumptions on the
potential, 8n is well defined and positive. Moreover, see [ref. 8, Thm. 1],
the limit 8(Q)=limn � � 8n(Q) exists and satisfies

8(Q)={Q(U )
+�

if Q # M{, 2

otherwise
(5.3)
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where

M{, 2 .[Q # M{ : Q(N 2
B)<+� for any bounded B/Rd]

and

U(|)= 1
2 :

q, q$ # |
q{q$

/(q) V(q&q$) (5.4)

In (5.4) / is any non negative function on Rd with compact support and
total integral 1 (it is easy to verify that Q(U ) does not depend on / if Q
is a stationary point process).

Finally define, for any * # R and ;�0,

K;, *(Q)=;8(Q)+h(Q | P)&;*\(Q) (5.5)

The following proposition establishes the basic properties of the func-
tionals introduced above (see refs. 7, 8 and 20).

Proposition 5.1. The functionals 8, K;, * : M{ � [0, +�] are
lower semicontinuous relative to {L (and then also relative to any coarser
topology on M{ , e.g. {w). Moreover K;, * has {L -compact level sets.

We can formulate now the LDP for Gibbsian point processes. The
form we need here is strictly contained in the results of the papers quoted
above:

Theorem 5.2. Let F # L and Fn be as in definition (3.10). Then,
for any * # R and ;�0, there exists the limit

lim
n � �

|Dn |&1 log EP exp[;*NDn
&;Hn+|Dn | Fn]

= sup
Q # M{

[Q(F )&K;, *(Q)] (5.6)

and the r.h.s. of (5.6) is finite.

Remark. In ref. 8 the principle is formulated in terms of functionals
of the stationary empirical field Rn, | obtained by replacing the configura-
tion | with the periodic continuation |(n) of its restriction to Dn , but the
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same result holds also for the spatial average Fn by standard arguments
that we do not describe here, see e.g. ref. 7.

An immediate consequence of the above principle is the existence of
the pressure p(;, *) and a variational formula for it. In fact, taking F#0
in (5.6) and recalling (2.7) and (2.8), we get

p(;, *)=& min
Q # M{

;&1K;, *(Q) (5.7)

and, comparing with (2.9), we recover the Helmholtz free energy as

a(;, \)= min
Q # M{ : \(Q)=\

[8(Q)+;&1h(Q | P)] (5.8)

where we used the fact that the r.h.s. of (5.8) is a convex function of \
(which is true since 8 and h( } |P) are affine functionals on M{).

Now we discuss the LDP for local Gibbs states of the type defined in
(2.11). We forget the dependence on t # [0, T] and we deal with a generic
smooth map x [ *(x) of Td into the one phase region U such that the
corresponding density x [ \(x) # W satisfies

|
Td

dx \(x)=1 (5.9)

We denote by f� #(x�
) the density w.r.t. +#(dx

�
) of the associated local Gibbs

state (observe that the functions x [ *(t, x) introduced in Section 2 satisfy
the conditions above for any t # [0, T]). The following theorem is con-
tained in Section 5 of ref. 20.

Theorem 5.3. Let A # L and . # C(Td). Then

lim
# a 0

#d log | dx
�

exp _:
i

;*(x i)&
;
2

:
i{ j

V(#&1(x i&xj))

+#&d |
Td

dx .(x) A(|x, #)&
=sup {|Td

dx [.(x) Qx(A)

&K;, *(x)(Qx)]; [Qx]/M{ : |
Td

dx \(Qx)=1= (5.10)
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Taking A#0 in (5.10) and recalling (5.7), we get

lim
# a 0

#d log | dx
�

exp _:
i

;*(xi)&
;
2

:
i{ j

V(#&1(xi&x j))&
=sup {|Td

dx [&K;, *(x)(Qx)]; [Qx] : |
Td

dx \(Qx)=1=
=|

Td
dx ;p(;, *(x)) (5.11)

where in the last equality we used the fact that the supremum of the
integrand is reached at \(Qx)=\(x) satisfying (5.9).

Theorem 5.3 is not sufficient for our purposes since to prove (3.25) we
need also an upper bound for the Laplace asymptotics of non local func-
tionals. The following theorem gives the required estimate.

Theorem 5.4. Let A, F, G # L with F bounded and let . # C(Td)
and � # C(Td_Td). Then:

lim sup
# a 0

#d log E f� # exp #&d _|Td
dx .(x) A(|x, #)

+|
Td

dx |
Td

dy �(x, y) F(|x, #) G(|y, #)&
�sup {|Td

dx |
Td

dy [.(x) Qx(A)+�(x, y) Qx(F ) Qy(G)

&K;, *(x)(Qx)&;p(;, *(x))]; [Qx]/M{ : |
Td

dx \(Qx)=1=
(5.12)

Proof. For any configuration of particles | on Td define

T (|)= :
z # |

;*(z)&
;
2

:
z, z$ # |

z{z$

V(#&1(z&z$))+#&d |
Td

dx .(x) A(|x, #)

+#&d |
Td

dx |
Td

dy �(x, y) F(|x, #) G(|y, #) (5.13)
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Setting

Zc
N .| dx

�
exp[T (x

�
)]

and making use of (5.11) it is enough to prove that

lim sup
# a 0

#d log Zc
N�sup {|Td

dx |
Td

dy [.(x) Qx(A)+�(x, y) Qx(F ) Qy(G)

&K;, *(x)(Qx)]; [Qx]/M{ : |
Td

dx \(Qx)=1= (5.14)

First of all we observe that for any partition of Td into cubes of side
2= there are uniform approximations of *, ., and � that are constant on
this partition. Let T=( } ), Zc

N, = be defined as T ( } ), Zc
N with *, ., and �

replaced by their approximations. Let Dl0
be a cube (as in definition

(3.10)) such that the functions A, F and G depend only on | & Dl0
and, for

some c>0, A, G�c(1+NDl0
). Then one easily bounds

|T (x
�
)&T=(x�

) |�O1(=) #&d |
Td

dx (1+NDl0
(|x, #))�O1(=) |Dl0

| (1+N )

(5.15)

with O1(=) � 0 as = a 0 (uniformly in #), so that

lim sup
# a 0

#d log Zc
N�lim sup

# a 0

#d log Zc
N, =+O1(=) |Dl0

|

On the other hand, also the error made in replacing the r.h.s. of (5.14) with
its =-approximation (i.e. the one defined with the piecewise constant
approximations of *, ., and �) is easily bounded by O2(=) |Dl0

| with
O2(=) � 0 as = a 0. Thus, with no loss of generality we can prove (5.14)
assuming *, ., and � constant on some cubic partition of Td.

Let P# be the Poisson point process on Td with intensity #&d and
define, for any + # R,

Z+(#).EP# exp[T (|)++N(|)]=e&#&d
:
�

n=0

#&dne+n

n!
Zc

n

Since

lim
N � �

1
N

log
e&NNN

N!
=0
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then (recall that N#dZ1 as # a 0)

lim sup
# a 0

#d log Zc
N� inf

+ # R

lim sup
# a 0

[#d log Z+(#)&+] (5.16)

From (5.16) we get (5.14) if

lim sup
# a 0

#d log Z+(#)

� sup
[Qx]/M{

|
Td

dx |
Td

dy [.(x) Qx(A)

+�(x, y) Qx(F ) Qy(G)&K;, *(x)(Qx)++\(Qx)] (5.17)

By redefining *(x) as *(x)++, it is enough to prove (5.17) for +=0.
Divide Td into disjoint boxes B_ of center _ and side (2#l) and let Dl0

be
the cube as in (5.15). Set

B_, l0
=[x # B_ : dist(x, Td "B_)�2#l0] (5.18)

and define

T__$(|)=(2#l)d _;*(_) NB_
&

;
2

:
z, z$ # | & B_

z{z$

V(#&1(z&z$))

+#&d.(_) |
B_, l0

dx A(|x, #)&
+#&d�(_, _$) |

B_, l0

dx |
B_$, l0

dy F(|x, #) G(|y, #) (5.19)

Since the potential is positive, we obtain an upper bound on T (|) by
neglecting the interaction between different boxes. Then

T (|)� :
_, _$

T__$(|)+R(|) (5.20)

where R takes into account the errors due to the integration on the smaller
cubes B_, l0

in (5.19). Because of the choice of l0 we easily bound, for some
C>0,

R�C#&d |
� (B_"B_, l0

)
dx (1+NDl0

(|x, #))
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We decompose � (B_"B_, l0
) into a union of disjoint cubes of side

(2#l0). Calling x̂: the centers of these cubes, we have

R�C :
n

:=1
|

Dl0

dr(1+NDl0
({r+#&1x̂:

|0, #))

with nt(#l)&d (l�l0)d&1 so that, by Jensen inequality,

lim sup
l � �

lim sup
# a 0

#d log EP# exp[R]

�lim sup
l � �

lim sup
# a 0

#dn log EP exp[C(1+NDl0
)]=0 (5.21)

where we used the independence and stationarity of P# and that
EP exp[aNB]<� for any a>0 and any bounded set B/Rd. From (5.20)
and (5.21) we get

lim sup
# a 0

#d log Z0(#)�lim sup
l � �

lim sup
# a 0

#d log EP# exp _ :
_, _$

T__$(|)& (5.22)

Now define the following local function on 0_0:

S__$(|1 , |2)=;*(_) R(|1)&;U(|1)+.(_) A(|1)+�(_, _$) F(|1) G(|2)

where R and U are defined in (3.11) and (5.4) respectively. Expanding
variables in the r.h.s. of (5.22) and neglecting errors that can be proved to
be of order O(1�l) uniformly in # # (0, 1] as done in (5.21), one easily
obtains (introducing a new parameter ==2l#)

lim sup
# a 0

#d log Z0(#)�lim sup
l � �

lim sup
= a 0

X(l, =) (5.23)

with

X(l, =).=d |Dl |&1 log E}_ P_ exp _=d :
_, _$

|Dl | (S__$)l (|_ , |_$)& (5.24)

where }_ P_ is the product measure on 0(=&d )=0_ } } } _0 of =&d inde-
pendent Poisson processes P_ on Rd and, analogously to (3.10), for any
local function M on 0_0, we defined

Ml(|1 , |2).
1

|Dl |2 |
Dl

dr |
Dl

dr$ M({r |1 , {r$|2)
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To analyze the limit in the r.h.s. of (5.23) we need first to introduce some
cutoffs. Given k+ , k& # N, let Xk+k&

(l, =) be defined as X(l, =) in (5.24)
with S__$ replaced by

k+ if S__$>k+

S k+k&
__$ .{S__$ if &k&�S__$�k+

&k& if S__$<&k&

Then, by definition of relative entropy,

Xk+k&
(l, =)�sup

Q {EQ _=2d :
_, _$

(S k+k&
__$ )l (|_ , |_$)&

&=d |Dl |&1 H \Q } }
_

(P_ b ?&1
Dl+l�

)+= (5.25)

where the supremum is taken over point processes Q on Dl+l� _ } } } _
Dl+l� . The parameter l� is chosen so large that S__$ is Dl� -measurable. The
variational formula for the relative entropy gives also the explicit form of
the measure Q� where the supremum in the r.h.s. of (5.25) is achieved, see
e.g. [ref. 5, Prop. 1.4.2]: Q� <<}_ (P_ b ?&1

Dl+l�
) and

dQ�
d(}_ (P_ b ?&1

Dl+l�
))

=N= exp _=d :
_, _$

|Dl | (S k+ k&
__$ )l (|_ , |_$)& (5.26)

(N= the normalization constant). For any x # Td let _(x) be such that
x # B_(x) , and denote by Q_ , Q__$ the _ th, [_, _$]th marginals of Q. From
(5.26) it is easy to prove that, for any x, y # Td, x{ y,

lim
= a 0

Dvar \Q� _(x) _( y)(d|1 , d|2),

| Q� (d|� ) Q� _(x)(d|1 | |� [_(x)]c) Q� _( y)(d|2 | |� [_( y)]c)+=0

where Dvar( } , } ) denotes the variation distance between measures.
Moreover

H \Q } }
_

(P_ b ?&1
Dl+l�

)+�:
_

H(Q_ | P_ b ?&1
Dl+l�

)
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Since *, ., � are piecewise constant, as = is small enough, for any x, y # Td,
the function S_(x) _( y) is independent on the partition [B_] and equal to

Sxy(|1 , |2).;*(x) R(|1)&;U(|1)+.(x) A(|1)+�(x, y) F(|1) G(|2)

Thus the limit as = a 0 of the r.h.s. of (5.25) is easily bounded and we get

lim sup
= a 0

Xk+k&
(l, =)

�sup
[Q$x]

|
Td

dx |
Td

dy [Q$x�Q$y(S k+k&
xy )&|Dl | &1 H(Q$x | P b ?&1

Dl+l�
)]

(5.27)

where the supremum is taken over all the collections [Q$x ; x # Td] of point
processes on Dl+l� . Now the proof follows in a standard way, see e.g. refs.
7 and 20. We extend Q$x to a point process Q"x on Rd by taking independent
copies on all disjoint cubes translated of Dl+l� . Then we obtain from it a
stationary process Q (l)

x by setting

Q(l)
x =|Dl+l� |

&1 |
Dl+l�

dr {r Q"x

From convexity of the relative entropy and the independence properties of
P one easily proves that h(Q (l)

x | P)�|Dl+l� |
&1 H(Q$x | P b ?&1

Dl+l�
). More-

over, for any bounded local function M on 0_0, |Q(l)
x �Q (l)

y (M )&
Q$x �Q$y(Ml)| [ 0 as l � �. Then from (5.27) we finally obtain

lim sup
l � �

lim sup
= a 0

Xk+k&
(l, =)�W([S k+k&

xy ]) (5.28)

where, for any collection [Mxy] of local functions on 0_0, we defined

W([Mxy]). sup
[Qx]/M{

|
Td

dx |
Td

dy [Qx�Qy(Mxy)&h(Qx | P)]

To remove the cutoffs we can argue as in the proof of Theorem 5.2 in
ref. 20, then we just sketch the argument. Let S k+

__$=min[S__$ ; k+] and
define S k+

xy and Xk+
(l, =) accordingly. Using the boundness of S k+k&

__$ and that
h( } |P) has compact level sets, one can prove that limk& � � W([S k+k&

xy ])�
W([S k+

xy ]). Then, since Xk+
(l, =)�Xk+k&

(l, =), from (5.28) we get

lim sup
l � �

lim sup
= a 0

Xk+
(l, =)�W([S k+

xy ]) (5.29)
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Now we are left with the upper cutoff. Recalling definition (5.24), by
Holder inequality, for any p, q>1 such that p&1+q&1=1, and any
k+ # N,

X(l, =)�
=d |Dl |&1

p
log E}_ P_ exp _=d :

_, _$

|Dl | ( pS k+
__$)l (|_ , |_$)&

+
=d |Dl |&1

q
log E}_ P_ exp _q=d :

_, _$

|Dl | ((S__$)l

&(S k+
__$)l)(|_ , |_$)& (5.30)

To bound the first term in the r.h.s. of (5.30) we can use (5.29) with S k+
__$

replaced by pS k+
__$ . To bound the second term we recall first that there are

C>0 and a bounded subset B of Rd such that S__$(|1 , |2)�C(1+NB(|1)
+NB(|2)) for any _, _$, so that

(S__$&S k+
__$)(|1 , |2)

�[C(1+NB(|1)+NB(|2))&k+]+

� 1
2 [C+2CNB(|1)&k+]++ 1

2 [C+2CNB(|2)&k+]+

Then, setting

Yl, k+
(|).exp _q

2 |
Dl

dr [C+2CNB({r|)&k+]+&
we have

E}_ P_ exp _q=d :
_, _$

|Dl | ((S__$)l&(S k+
__$)l)(|_ , |_$)&

�E}_ P_ _`
_, _$

Yl, k+
(|_)=d Yl, k+

(|_$)
= d&

=EP[Yl, k+
(|)=d

]=&2d
�EP[Yl, k+

(|)]=&d

so that, from (5.30),

lim sup
l � �

lim sup
= a 0

X(l, =)

� lim
k+ � �

W([ pS k+
xy ])+ lim

k+ � �
lim

l � �

1
q |Dl |

log EP[Yl, k+
(|)] (5.31)

686 Butta� and Lebowitz



The second term in the r.h.s. of (5.31) is zero, see [20, Thm. 5.2]. Then,
since the first term in (5.31) is bounded by W([ pSxy]), in the limit p a 1
we finally get

lim sup
l � �

lim sup
= a 0

X(l, =)�W([Sxy]) (5.32)

But (recall the above definition of Sxy) W([Sxy]) is equal to the r.h.s. of
(5.17) with +=0, which then follows from (5.23) and (5.32). The theorem
is proved. K

Now we can give the missing proofs of Section 3.

Proof of (3.21). From the basic entropy inequality, for any $0>0,

E f# (t) _|Td
dx ;0p(t, x)&&$&1

0 H#(t)

�$&1
0 #d log E f� # (t) exp _$0#&d |

Td
dx ;0p(t, x)& (5.33)

As before we forget the dependence on t # [0, T] and we deal with a
generic smooth map x [ *(x) # Ku such that the corresponding density
\(x)=�* p(;, *(x)) # Kw satisfies (5.9) (the compact sets Ku and Kw have
been introduced just after Theorem 2.1). Let f� # be the density of the corre-
sponding local Gibbs state. From (5.33) it is enough to prove that, for $0

small enough and uniformly in the choice of x [ *(x) above,

lim sup
k � �

lim sup
n � �

lim sup
# a 0

$&1
0 #d log E f� #

_exp _$0#&d |
Td

dx ;0p(x)&=0, p=3, 4 (5.34)

where 0p(x) is defined as in (3.20) but relative to the map x [ *(x). We
analyze the cases p=3, 4 separately:

( p=3). From the smoothness of x [ *(x) and since |. V Rn(| } , #)|
�&.&� , for any . # C(Td) and any | } , # , there is C1>0 such that

03(x)�C1(1+Rn(|x, #)+(,k b |G| )n (|x, #))(1&un(|x, #)) (5.35)
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where

|G| (|).
;
2

:
q, q$ # |

q{q$

/(q) |{V| (q&q$) |q&q$| (5.36)

From Theorem 5.3, (5.11) and (5.35) we get the following bound:

lim sup
k � �

lim sup
n � �

lim sup
# a 0

$&1
0 #d log E f� # exp _$0#&d |

Td
dx ;03(x)&

�lim sup
k � �

lim sup
n � �

sup {|Td
dx [$0;C1 Qx((1+Rn+(,k b |G| )n)(1&un))

&K;, *(x)(Qx)&;p(;, *(x))]; [Qx]/M{ : |
Td

dx \(Qx)=1= (5.37)

For any Qx # M{ let � &x(de) Qe be its ergodic decomposition. Recalling
that K;, *( } ) is an affine functional, the r.h.s. of (5.37) becomes

lim sup
k � �

lim sup
n � �

sup {|Td
dx | &x(de)

_[$0;C1 Qe((1+Rn+(,k b |G| )n)(1&un))

&K;, *(x)(Qe)&;p(;, *(x))]; [&x] : |
Td

dx | &x(de) \(Qe)=1= (5.38)

Since |(1+Rn+(,k b |G| )n)(1&un)|�1+k+Rn and, for any [&x] in the
supremum above, � dx � &x(de) Qe(1+k+Rn)�2+k, we can pass to the
limit n � � inside the supremum and apply the Dominated Convergence
Theorem. Then we can drop the constraint so that (5.38) is bounded by

lim sup
k � �

|
Td

dx sup
& {| &(de)[$0;C1(1+\(Qe)+Qe(,k b |G| ))(1&1K (\(Qe)))

&K;, *(x)(Qe)]&;p(;, *(x))= (5.39)

By arguing as in the proof of Lemma 4.2 of ref. 25 (see also the proof of
Lemma 3.1 in Section 4), since V is positive and superstable, there is C2>0
such that

|G| (|)�C2;U(|) (5.40)
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where U(|) is defined as in (5.4) with an appropriate choice (depending on
|G| ) of the function /. Then, from (5.3) it follows that, for any Q # M{ ,

Q(,k b |G| )�C2 ;8(Q)

so that, setting $=$0 max[;C1 C2 ; C1], (5.39) can be bounded by

|
Td

dx sup
&

| &(de)[($;+$;\(Qe)+$;8(Qe)&K;, *(x)(Qe)&;p(;, *(x)))

_(1&1K (\(Qe)))&(;p(;, *(x))+K;, *(x)(Qe)) 1K (\(Qe))]

�|
Td

dx sup
m

[($;(1+(*(x)+$) m)+;(1&$) p(;(1&$), *(x)+$)

&;p(;, *(x))&I;(1&$)(*(x)+$, m))(1&1K (m))&I;(*(x), m) 1K (m)]

In the last inequality we used (5.5), (5.8) and introduced the functional
I;(*, m) defined in (3.27). Observe that, for any * # Ku , m [ I;(*, m) is non
negative, convex, and strictly positive for m � K. Recall also that the
pressure p(;, *) is a continuous function of its variables. Then, by con-
tinuity, the superior is 0 for $ (i.e. $0) small enough.

( p=4). Since x [ D!'*(x) is bounded and |D!' J V Rn(| } , #)|�
&DJ&� , recalling definitions (3.12) and (5.36), there is C4>0 such that

|
Td

dx 04(x)�C4 |
Td

dx [|G|n(|x, #)&k]+=C4 |
Td

dx [|G| (|x, #)&k]+

Then (5.34) for p=4 is proved if, for $0 small enough,

lim sup
k � �

lim sup
# a 0

$&1
0 #d log E f� # exp _$0;C4#&d |

Td
dx [|G| (|x, #)&k]+&=0

(5.41)

Arguing as in the proof of Theorem 5.4, (5.41) follows if, for any $
small enough,

lim sup
k � �

lim sup
# a 0

#d log EP# exp[T ($, k)(|)]&|
Td

dx ;p(;, *(x))=0 (5.42)
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where P# is the Poisson process on Td with intensity #&d and

T ($, k)(|)= :
z # |

;*(z)&
;
2

:
z, z$ # |

z{z$

V(#&1(z&z$))

+$#&d |
Td

dx [ |G| (|x, #)&k]+ (5.43)

Let l0 be such that U(|)=U(| & Dl0
) with U chosen as in (5.40). As in the

proof of Theorem 5.4 divide Td into disjoint boxes B_ of side (2#l) and
assume *(x) constant on this partition for small #'s. Let B_, l0

be as in
(5.18). From (5.40) we can estimate:

#&d |
Td"� B_, l0

dx [ |G| (|x, #)&k]+�
;C2

2
:

z, z$ # |"� B_, 2l0
z{z$

V(#&1(z&z$))

(5.44)

Restricting to $<C &1
2 , neglecting the interaction between different

boxes and using the independence properties of P# , from (5.44) we get

EP# exp[T ($, k)(|)]�`
_

EP# exp[T ($, k)
_ ] (5.45)

where

T ($, k)
_ =;*(_) NB_

&
;
2

:
z, z$ # | & B_

z{z$

V(#&1(z&z$))

+
;$C2

2
:

z, z$ # | & (B_"B_, 2l0
)

z{z$

V(#&1(z&z$))

+$#&d |
B_, l0

dx [|G| (|x, #)&k]+

Now, expanding variables, we can rewrite:

EP# exp[T ($, k)
_ (|)]=Z ($)

Dl
(;, *(_)) E+Dl

($, _)
exp _$ |

Dl&l0

dr [|G| ({r|)&k]+&
(5.46)
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where + ($, _)
Dl

is the grand canonical measure on Dl with chemical potential
*(_) and interaction energy

Hl(|)&
$C2

2
:

q, q$ # | & Dl, l0
q{q$

V(q&q$)

where Dl, l0
.Dl"Dl&2l0

, the Hamiltonian Hl(|) was defined in (5.2), and
Z($)

Dl
(;, *(_)) is the corresponding partition function. From (5.45) and

(5.46) we get

#d log EP# exp[T ($, k)(|)]

�#d |Dl | :
_

|Dl |&1 log Z ($)
Dl

(;, *(_))

+#d |Dl | :
_

|Dl |&1 log E+Dl

($, _)
exp _$ |

Dl&l0

dr [ |G| ({r|)&k]+&
(5.47)

Since V is superstable and positive, (23) there is a positive constant b
such that, for any | # 0 and any bounded region B/Rd,

1
2

:
q, q$ # | & B

q{q$

V(q&q$)�
bNB(|)2

|B|

Then we can estimate

Z ($)
Dl

(;, *(_))

�EP exp _;*(_) NDl&2l0
&;Hl&2l0

&
;(1&$C2) bN 2

Dl, l0

|Dl, l0
|

+*(_) NDl, l0&
�exp _ *(_)2

4;b(1&$C2)
|Dl, l0

|& ZDl&2l0
(;, *(_))

so that

lim sup
l � �

lim sup
# a 0

#d |Dl | :
_

|Dl | &1 log Z ($)
Dl

(;, *(_))�|
Td

dx ;p(;, *(x))

(5.48)

On the other hand, from (5.40),

E+Dl

($, _)
exp _$ |

Dl&l0

dr[ |G| ({r |)&k]+&�E+Dl

($, _)
exp[$C2;Hl(|)] (5.49)
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and, again from superstability, the r.h.s. of (5.49) is finite for any l if $ is
small enough. Then, by the Dominated Convergence Theorem,

lim sup
k � �

E+Dl

($, _)
exp _$ |

Dl&l0

dr [|G| ({r |)&k]+&=1

so that

lim sup
l � �

lim sup
k � �

lim sup
# a 0

#d |Dl | :
_

|Dl |&1 log E+Dl

($, _)

_exp _$ |
Dl&l0

dr [|G| ({r |)&k]+&=0 (5.50)

From (5.47), (5.48) and (5.50) we get (5.42) (in fact the l.h.s. of (5.42)
cannot be negative). K

Proof of (3.25). Recalling definition (3.20), by Theorem 5.4 the l.h.s.
of (3.25) can be bounded by

lim sup
n � �

sup {|Td
dx |

Td
dy [$;[(*4 &; |{*| 2)(s, x) Qx(Rnun)&;2*(s, x)

_Qx(P(Rn) un)&;{*(s, x) } {J(x& y) Qx(Rnun) Qy(Rn)

&;2J(x& y) Qx(P(Rn) un) Qy(Rn)&0(s, x, \(s)) Qx(un)]

&K;, *(s, x)(Qx)&;p(;, *(s, x))]; [Qx]/M{ : |
Td

dx \(Qx)=1=
(5.51)

For any Qx # M{ let � &x(de) Qe be its ergodic decomposition. Just as
argued after (5.38), we can pass to the limit through the supremum and
apply the Dominated Convergence Theorem. Then, calling &� x(dm) the dis-
tribution of \(Qe) under &x(de), (5.51) can be bounded by

sup {| `
z # Td

&� z(dm(z)) |
Td

dx [$;[0(s, x, m)&0(s, x, \(s))] 1K (m(x))

&I;(*(s, x), m(x))]; [&� x] : |
Td

dx | &� x(dm) m<�= (5.52)

from which (3.25) follows immediately. K
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